Synthesis of Ru(II) complexes of N-Heterocyclic Carbenes and Their Promising Photoluminescence Properties in water

Enoch Akuamoah Mensah
Abstract

The potential use of Ru(bpy)$_3^{2+}$ and its derivatives as a chromophoric component in diverse areas of light emitting devices, artificial photosynthesis, light emitting sensors etc have received a considerable attention in recent times. The purpose of this study is to describe the synthesis of Ru(II) complexes of N-heterocyclic carbenes and to study their photoluminescence properties in water.

Two novel complexes of Ruthenium N-heterocyclic carbenes, which are analogous to Ru(bpy)$_3^{2+}$ and Ru(terpy)$_2^{2+}$ were synthesized. The complex, which is analogous to Ru(terpy)$_2^{2+}$ exhibited photoluminescence properties with long life time of 820 ns in acetonitrile and 3100 ns in water at room temperature respectively.
Introduction

Complex Ru(bpy)$_3^{2+}$ and its derivatives have received considerable attention as potential chromophoric components such diverse areas of research such as light emitting devices, artificial photosynthesis, light emitting sensors, etc.1 However, complexes of Ru(bpy)$_3^{2+}$ family are unsuitable for the construction of supramolecular systems, from geometric and synthetic view points.2 From purely structural and synthetic viewpoints, terpyridine-based ligands are particularly useful for the design of linear multimetallic component systems. However, in contrast to Ru(bpy)$_3^{2+}$, the complex Ru(terpy)$_2^{2+}$ has not attracted a great deal of attention as a result of its poor photochemical properties (in particular, very weak luminescence and short excited state life times at room temperature).

Recently, N-heterocyclic carbene (NHC) ligands have become universal ligands in organometallic and inorganic chemistry.3 Because of their specific coordination chemistry, N-heterocyclic ligands stabilizes and activate metal centers and, in some cases, and replace organophosphanes. Moreover, N-heterocyclic carbene ligands have a much higher trans effect than N- or P-donors and are more tightly bound to the metal.4 However, their photophysical and –chemical properties have been relatively less well studied.5 In the course of this study and of the use of N-heterocyclic carbene complexes,6 synthesis of complexes 1 and 2(PF$_6^-$), which are analogous to Ru(bpy)$_3^{2+}$ and Ru(terpy)$_2^{2+}$, respectively, as well as their photoochemical properties were studied. This paper presents the results of the synthesis and photochemical properties of complexes 1 and 2(PF$_6^-$) along with their relevance to Ru(bpy)$_3^{2+}$ and Ru(terpy)$_2^{2+}$.
Synthesis

Complex 1 was synthesized in 75% yield by the complexation of RuCl₃ with ligand L₂ in a refluxing ethylene glycol solution. Complexes 2(PF₆⁻), 2(BPh₄⁻), and 2(Br⁻) was also synthesized by the complexation of RuCl₃ with ligand L₂ in refluxing ethylene glycol. The molecular structure of complex 2(BPh₄⁻) was confirmed by X-ray diffraction (Figure 1).⁷ The two ligands are mutually arranged about each metal center in an almost manner.

Scheme 1.
The resulting local environment around the Ru$^{2+}$ cation is therefore pseudo orthogonal (D$_{2d}$) with a conformational restriction imposed by the presence of methyl groups on ligand L2.7

Results and Discussion

The photophysical properties of complex 1 and 2(PF$_6^-$), were investigated in order to make a comparison with those of Ru(bpy)$_3$$^{2+}$ and Ru(terpy)$_2$$^{2+}$. Complex 1, compared with Ru(bpy)$_3$$^{2+}$, shows a blue shifted λ_{max} (368 nm) in the absorption spectrum presumably due to the electron rich property of NHC ligands (Figure 2 and Table 1).7
Table 1. Spectroscopic Properties of Ru\(^{2+}\) Complexes

<table>
<thead>
<tr>
<th>complex</th>
<th>(\lambda_{\text{max}}^{\text{abs}}) (nm)</th>
<th>(\varepsilon\left(10^3 \text{ M}^{-1} \text{ cm}^{-1}\right))</th>
<th>(\lambda_{\text{max}}^{\text{em}}) (nm)</th>
<th>rel em int(^b)</th>
<th>decay time (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru(bpy)(_3)^{2+}\</td>
<td>450</td>
<td>14.3</td>
<td>597</td>
<td>3.83</td>
<td>860(^c)</td>
</tr>
<tr>
<td>Ru(terpy)(_2)^{2+}\</td>
<td>474</td>
<td>17.2</td>
<td></td>
<td></td>
<td>0.25(^d)</td>
</tr>
<tr>
<td>1</td>
<td>368</td>
<td>11.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2(PF(_6^-))</td>
<td>343, 382</td>
<td>11.6, 15.2</td>
<td>532</td>
<td>1.04</td>
<td>820</td>
</tr>
<tr>
<td>2(BPh(_4^-))</td>
<td>343, 382</td>
<td>15.6, 20.1</td>
<td>532</td>
<td>0.39</td>
<td>490</td>
</tr>
<tr>
<td>2(Br(^-))</td>
<td>343, 382</td>
<td>13.0, 16.8</td>
<td>532</td>
<td>1.00</td>
<td>600</td>
</tr>
<tr>
<td>2(Br(^-))-H(_2)O</td>
<td>341, 381</td>
<td>13.8, 17.3</td>
<td>532</td>
<td>9.90</td>
<td>3100</td>
</tr>
</tbody>
</table>

Figure 2. Absorption and emission spectra, with excitation at 354 nm, of Ru\(^{2+}\) complexes in acetonitrile (if not specified) and water under argon.

The voltammetric oxidation of complexes 1 and 2(PF\(_6^-\)) occurred at a chemically reversible 1-electron process at a scan rate of 100 mV/s. As expected, \(E_{1/2}\) for 2\(^{2+}\)/2\(^{3+}\) was similar to that of 1\(^{2+}\)/1\(^{3+}\), but lower than those of Ru(bpy)\(_3\)^{2+} and Ru(terpy)\(_2\)^{2+} due to the electron-
The donating nature of NHC, which is consistent with the high energy for HOMO. The increase in the energy of the HOMO suggests a red shift in the absorption spectrum. However, experimental observation shows a blue shift in the absorption spectrum. It is possible that the NHC has a higher electron density than terpy, and a higher lying π^* orbital. Therefore, it is expected that the increase in the LUMO energy in the complex $2(\text{PF}_6^-)$ is higher than that of Ru(terpy)$_2^{2+}$, which is consistent with DFT calculations. This would mean that the blue shift is essentially a LUMO effect.

Complex 1 was non emissive in acetonitrile at room temperature. However, complex $2(\text{PF}_6^-)$ showed a very significant photophysical properties. It shows a different absorption spectrum from that of Ru(terpy)$_2^{2+}$ (Figure 2 and Table 1). The complex $2(\text{PF}_6^-)$ showed two absorption peaks at 343 nm and 382 nm. Compared with those of Ru(bpy)$_3^{2+}$ and Ru(terpy)$_2^{2+}$, the two peaks were highly blue shifted. Using ab initio calculations, it was provisionally determined that the two blue-shifted peaks arose from the MLCT. In contrast to Ru(terpy)$_2^{2+}$, complex $2(\text{PF}_6^-)$ showed a very strong emission with a maximum at 523 nm.

The emission kinetics at 523 nm in Figure 3 shows a long lifetime of 820 ns in acetonitrile at room temperature, which is 3280 times larger than that (0.25 ns) of Ru(terpy)$_2^{2+}$.
In artificial Photosynthesis, the lifetime of the chromophore in water is very important.\(^9\)
In order to measure its lifetime in water, complex 2(Br\(^-\)) was synthesized. The lifetimes of this complex was 600 ns in acetonitrile and 3100 ns in water, i.e., 12400 times larger than that of Ru(terpy)\(_2\)\(^{2+}\). This observation is quite unprecedented because MLCT chromophores generally show shorter lifetimes in water than in organic solvents.\(^{10}\) As shown in Table 1, the counter ions strongly influence the luminescence lifetimes of the chromophore.\(^{11}\)

Conclusion

In conclusion, complexes 1 and 2(PF\(_6\)\(^-\)) were synthesized on the basis of NHC. Complex 2(PF\(_6\)\(^-\)) showed a very significant photoluminescence in water, and it is expected that that
this complex can be a complement or substitute for Ru(bpy)$_3^{2+}$ in many fields. Complex 2(PF$_6^-$) represents an alternative molecular design that imparts a green photoluminescence into a synthetically facile system.

References

