CHEM334 Lectures 8-9: MT Chapter 10
Crystal and Ligand-field Theories, Ligand Field stabilization, Jahn-Teller distortion

1. Valence bond theory
 - electron counting, hybridization (n)d (n+1)s (n+1)p
 - gives good starting point for stoichiometry + structure + expected reactivity (coordinative saturation, relative ligand bonding energies)
 - VSEPR can be applied on electron density of valence electrons (primarily ligand based)
 - limited description of low/high spin complexes, nothing on excited states, exceptions (18 vs. 16 e⁻ rule)

2. Electrostatic (ionic) models:
 - Coulomb attraction and repulsion between metal-ligand, ligand-ligand (charge, dipole)
 - coordination compounds at the ionic limit give qualitative bond energy and complex stability

3. Crystal Field Theory (Bethe - 1929):
 - splitting of d orbitals in the field of negatively charged ions as ligands
 - at the ionic limit in perfect octahedral complex (no overlap between metal d and ligand p orbitals):
 starting with $\Psi' = \Psi''$,
 where $\Psi_{metal}(x,y,z)$ is the metal d orbital wave function and $\Psi = \Psi' + \Psi''$
 $\Psi_{Crystal} = \sum Z_i \phi_i / r_{i-M}$, where i runs ligand 1 to ligand 6 in O₆, Z_i number of ligand electrons
 1/r_M potential is expressed in spherical harmonics centered at the metal, hence $\phi_{metal} = \sum Y_{ij}$
 solution of the secular equation in block-diagonalized form (irred.reps) gives
 $E_{2g} = 6 \cdot Z \phi^2 / r_{M-L} + 4Dq$ and $E_{4g} = 6 \cdot Z \phi^2 / r_{M-L} + 6Dq$, where $Dq = (35Z/6r_{M-L})R_{metal}$

 gaseous atoms (0 eV) \Rightarrow spherical perturbation ($6 \cdot Z \phi^2 / r_{M-L} \approx 10 \text{ eV}$) \Rightarrow splitting of d orbitals ($Dq \approx 1 \text{ eV}$)
 - center of gravity rule: sum of the products of energy and orbital occupations must give zero for d⁰, thus no difference to a spherical field $\Rightarrow 4\cdot E(2g) + 6\cdot E(4g) = 0 \Rightarrow$ same for d⁴, d⁶ (S=5/2)
 - in d⁴ (S=3/2): LFSE = 3 \cdot (-4Dq) extra stabilization due to preferential occupation of lower d orbital

 example: (Cr(OH₂)₂)⁺⁺ M-ligand bond 560 kJ/mol; (Fe(OH₂)₂)⁺⁺⁺ bond energy 485 kJ/mol – extend this to d⁹-d¹⁰

 note that LFSE for d⁹ is always -12Dq, but Dq changes by ligand/metal \Rightarrow spectrochemical series

 fixed metal: $I^- < Br^- < S^- < *SCN^- < Cl^- < NO_3^- < F^- < H_2O < CO_3^{2-} < NH_3 < py < Ph_3P < Ph_3N < CN^- < CO$
 σ- and π-donor (atoms) $< \sigma$-donor (lone pairs) $< \pi$-donor and π-acceptor (organometallics) - from MO theory

 fixed ligand: Mn²⁺ < Ni²⁺ < Co²⁺ < Fe³⁺ < Fe²⁺ < Cu²⁺ < Mn³⁺ < Mo⁶⁺ < Rh³⁺ < Ru³⁺ < Pd⁴⁺ < Ir⁴⁺ < Pt⁴⁺
 more positive charge ($Z_{metal} \rightarrow r_{M-L}$ distance) $< \text{ increasing size of the d-orbital (R_{metal} dependence on n) }$ - from CF theory

 - in d⁴: two possibilities - t₂g² e_g² (S=2) LFSE = -6Dq; t₂g² e_g² (S=1,0) LFSE = -16Dq
 determining factors: opposite spin - pairing repulsion energy (PRE) – forcing to be on the same orbital parallel spin - exchange stabilization (EXS) – different orbitals less repulsion

 - in d⁴ vs. d⁶: LFSE = 0 vs. -4Dq for high spin; -20Dq vs. -24Dq for low spin
 why not all low spin? \Rightarrow d⁶ large exchange stabilization and no spin pairing repulsion

 in general if Dq is small \Rightarrow large EXS to PRE ratio \Rightarrow weak field limit \Rightarrow high spin complex (Cr, Sr²⁺)

 if Dq is large \Rightarrow small EXS to PRE ratio \Rightarrow strong field limit \Rightarrow low spin complexes (CO, CN⁻)

 PRE, EXS: increases as the charge/Z_{metal} increases (2⁺ to 3⁺) & decreases as the size increases (3d → 4d)
• Distortion from perfect O_h symmetry:

a) axial elongation to tetragonal D_{4h}, such as in (Cu(NH$_3$)$_4$)$^3^+ _\text{+}$:
- in O_h, e_g^4 t_{2g}^0, LFSE = -$4Dq$ ⇒ see correlation table below ⇒ in D_{4h} b_{2g}^1 a_{1g}^1 b_{2g}^2 e_g^4, LFSE = -$4Dq$ - β

<table>
<thead>
<tr>
<th>O_h</th>
<th>T_d</th>
<th>D_{4h}</th>
<th>D_{2d}</th>
<th>C_{4v}</th>
<th>C_{2v}</th>
<th>D_{3d}</th>
<th>D_3</th>
<th>C_{2h}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{1g}</td>
<td>A_1</td>
<td>A_{1g}</td>
<td>A_1</td>
<td>A_1</td>
<td>A_1</td>
<td>A_{1g}</td>
<td>A_1</td>
<td>A_g</td>
</tr>
<tr>
<td>A_{2g}</td>
<td>A_2</td>
<td>A_{2g}</td>
<td>B_1</td>
<td>B_1</td>
<td>A_2</td>
<td>A_{2g}</td>
<td>B_2</td>
<td>B_g</td>
</tr>
<tr>
<td>E_g</td>
<td>E</td>
<td>E</td>
<td>A_{1g}</td>
<td>B_1</td>
<td>A_1</td>
<td>A_{1g}</td>
<td>E_g</td>
<td>A_{g}^2</td>
</tr>
<tr>
<td>T_{1g}</td>
<td>T_1</td>
<td>T_1</td>
<td>A_{2g}</td>
<td>E_g</td>
<td>A_{2g}</td>
<td>A_{2g}</td>
<td>A_{2g}</td>
<td>A_{g}^2</td>
</tr>
<tr>
<td>T_{2g}</td>
<td>T_2</td>
<td>T_2</td>
<td>B_{2g}</td>
<td>E_g</td>
<td>B_{2g}</td>
<td>B_{2g}</td>
<td>B_{2g}</td>
<td>A_{g}^2</td>
</tr>
<tr>
<td>A_{1u}</td>
<td>A_1</td>
<td>A_1</td>
<td>A_1</td>
<td>A_1</td>
<td>A_1</td>
<td>A_1</td>
<td>A_1</td>
<td>A_1</td>
</tr>
<tr>
<td>A_{2u}</td>
<td>A_2</td>
<td>A_2</td>
<td>A_2</td>
<td>A_2</td>
<td>A_2</td>
<td>A_2</td>
<td>A_2</td>
<td>A_2</td>
</tr>
<tr>
<td>E_u</td>
<td>E</td>
<td>E</td>
<td>A_{1u}</td>
<td>B_1</td>
<td>A_1</td>
<td>A_{1u}</td>
<td>E_u</td>
<td>A_{u}^2</td>
</tr>
<tr>
<td>T_{1u}</td>
<td>T_1</td>
<td>T_1</td>
<td>A_{2u}</td>
<td>E_u</td>
<td>A_{2u}</td>
<td>A_{2u}</td>
<td>A_{2u}</td>
<td>A_{u}^2</td>
</tr>
<tr>
<td>T_{2u}</td>
<td>T_2</td>
<td>T_2</td>
<td>B_{2u}</td>
<td>E_u</td>
<td>B_{2u}</td>
<td>B_{2u}</td>
<td>B_{2u}</td>
<td>A_{u}^2</td>
</tr>
</tbody>
</table>

- Jahn-Teller effect: additional LFSE due to distortion to lower symmetry to eliminate orbital degeneracy
- similar stabilization for low spin d^5, high spin d^4 complexes (d_{2} orbital separates from d_{2})

b) completely remove the axial ligands in O_h (⇒ D_{4h}, as in d^8 [Ni(CN)$_4$]$^{3+}$, [PdCl$_4$]$^{2-}$; but not in [NiCl$_4$]$^{5+}$)
- with strong field ligands & large $10Dq$: low spin square planar complex, b_{2g}^0 b_{2g}^2 a_{1g}^2 e_g^2
- with weak field ligands & large $10Dq$: low spin square planar complex, b_{2g}^0 b_{2g}^2 a_{1g}^2 e_g^2
- with weak field ligands & small $10Dq$: small ligand-ligand repulsion (H$_2$O), b_{2g}^0 a_{1g}^2 b_{2g}^2 e_g^4
- large ligand-ligand repulsion (Cl$^-$) ⇒ ML$_4$ tetrahedral

c) tetrahedral (⇒ T_d, such as in [NiCl$_4$]$^{5+}$):
- from group theory (t3(xz,yz,z2); e(x2-y2,xy) ⇒ only the splitting is given not the order
- same CF theory approach as for O_h ⇒ solution of the secular equation gives
 \[E_e = 4Ze^2 / r_{M-L} - 6Dq \] and \[E_{e} = 4Ze^2 / r_{M-L} + 4Dq, \] where \[Dq = (35Ze^2/9r_{M-L}^3)R_{ad} \]
- opposite order in T_d compared to O_h, since t_1 more toward ligands; e in between the ligands
- $Dq_{ad} = 4/9 Dq_{ad}$ - generally high spin complexes due to smaller Dq (greater PRE/EXS energies)
- in d^4, d^3, d^2: flattened tetrahedral (D_{2d}), tetragonal (D_{4h}) or trigonal (C_3) Jahn-Teller distortions

d) d-manifold splitting for other point groups:
 - hints: a) start from O_h or T_d and distort the structure
 - b) put negative charges along bonds and estimate M.L. repulsions

<table>
<thead>
<tr>
<th>ML_n</th>
<th>z^2</th>
<th>x^2-y^2</th>
<th>xy</th>
<th>xz</th>
<th>yz</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML_2 (Ib)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>ML_3 (Oh)</td>
<td>6.00</td>
<td>6.00</td>
<td>-4.00</td>
<td>-4.00</td>
<td>-4.00</td>
</tr>
<tr>
<td>ML_4 (Td)</td>
<td>-2.67</td>
<td>-2.67</td>
<td>1.78</td>
<td>1.78</td>
<td>1.78</td>
</tr>
<tr>
<td>ML_2 (C_N $\times y$)</td>
<td>-2.14</td>
<td>6.14</td>
<td>1.14</td>
<td>-2.57</td>
<td>-2.57</td>
</tr>
<tr>
<td>ML (C_M $\times z$)</td>
<td>5.14</td>
<td>-3.14</td>
<td>-3.14</td>
<td>0.57</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Check this out:
ML$_6$ = 2-ML + ML$_4$ = 2-ML + 2-ML
ML$_3$ = 3/2 ML$_2$
ML$_6$(TBP) = ML$_6$ + 2ML
ML$_2$(D$_n$) = ML$_2$ - 2-ML
ML$_2$(D$_d$) = ML$_2$ - 3-ML$_2$