I. Electrochemical cells:
 a) galvanic or Voltaic cells:
 • spontaneous redox reactions ($\varepsilon^o > 0$; $\Delta G^o < 0$)
 • chemical energy → electrical energy
 • concentration cells (entropy driven)
 • batteries (Pb/PbO$_2$; Zn/NH$_4$Cl(MnO$_2$); Zn/MnO$_2$; Cd/NiO$_2$; Zn/HgO)
 • fuel cells (2H$_2$ + O$_2$ → 2H$_2$O; oxidation of 'organic' compounds)
 • corrosion (passive prevention: paint, coating, galvanization; active: cathodic (Mg, Ti)
 b) electrolytic cell:
 • non-spontaneous redox reactions ($\varepsilon^o < 0$; $\Delta G^o > 0$) – need external work to make it happen
 • electrical energy → chemical energy
 • battery recharging (requires reversible phase changes: Pb/PbO$_2$; Cd/NiO$_2$ alkaline battery)
 • metal separation, isolation and synthesis (Cu/Au; aluminum)
 (compare to separation of metal ions based on their solubility)
 • plating objects (Cr, Pt)

II. Electrolysis:
 • Zn metal in CuSO$_4$ solution →
 A: Zn(s) → Zn$^{2+}$ + 2 e$^-$ $\varepsilon^o = 0.76$ V
 C: Cu$^{2+}$ + 2 e$^-$ → Cu(s) $\varepsilon^o = 0.34$ V $\varepsilon_{cell}^o = 1.1$ V Cu deposit
 $\Delta G^o = -2$ moles 96.5 kC/moles 1.1 J/C = -212.3 kJ formation
 Zn is less noble than Cu
 • Ag metal in CuSO$_4$ solution →
 A: Ag(s) → Ag$^+$ + e$^-$ $\varepsilon^o = -0.80$ V
 C: Cu$^{2+}$ + 2 e$^-$ → Cu(s) $\varepsilon^o = 0.34$ V $\varepsilon_{cell}^o = -0.56$ V no deposit
 $\Delta G^o = -2$ moles 96.5 kC/moles (-0.56 J/C) = 108.1 kJ formation
 Ag is more noble than Cu
 add an additional Ag electrode (cathode) with external potential $U > 0.56$ V → reaction becomes spontaneous → Cu(s) deposit formation
 turn off the external power source → Cu(s) deposit will disappear
 • Ag metal in electrolyte solution →
 A: Ag → Ag$^+$ + e$^-$ with external potential Ag oxidizes on anode
 C: Ag$^+$ + e$^-$ → Ag and Ag$^+$ reduces on cathode electrodes
 • Careful with the external potential!
 - Electrolysis of aqueous solution of CrCl$_3$
 cathode reaction: Cr$^{3+}$ + 3 e$^-$ → Cr $\varepsilon^o = -0.73$ V
 anode reaction: 2 Cl$^-$ → Cl$_2$ + 2 e$^-$ $\varepsilon^o = -1.36$ V
 4 Cr$^{3+}$ + 6 Cl$^-$ → 3 Cl$_2$ + 4 Cr $\varepsilon_{cell}^o = -2.09$ V $U_{ext} > 2.09$ V Cl$_2$ starts to evolve
 - object to be plated with Cr needs to conduct electricity
 1. object has Al → Al$^{3+}$ + 3 e$^-$ $\varepsilon^o = 1.66$ V spontaneous Cr deposition
 external voltage = 0 already work
 2. object has Fe → Fe$^{2+}$ + 2 e$^-$ $\varepsilon^o = 0.44$ V
 external voltage > 0.39 V; ΔG^o is already negative
 odorless gas evolves, O$_2$
 2 H$_2$O → O$_2$ + 4H$^+$ + 4 e$^-$ $\varepsilon^o = -1.23$ V
• Quantitative treatment of electrolysis
 ♦ external potential in the right range drives the reaction
 ♦ current \([A] = \text{flow of charge per unit time } [\text{Coulomb}]/[\text{second}]
 ♦ quantity of charge flow in Coulomb → Faraday constant → moles of electrons
 ♦ from stoichiometry, molar ratios of formed/consumed products/reactants can be determined

III. Application of electrolysis:
 • water electrolysis
 anode: \(2 \text{H}_2\text{O} \rightarrow \text{O}_2 + 4\text{H}^+ + 4 \text{e}^-\) \(-\varepsilon^\circ = -1.23 \text{ V}\)
 cathode: \(4\text{H}_2\text{O} + 4 \text{e}^- \rightarrow 2 \text{H}_2 + 4 \text{OH}^-\) \(\varepsilon^\circ = -0.83 \text{ V}\)
 \(\varepsilon_{\text{cell}} = -2.06 \text{ V}\)
 ♦ 6 V battery attached to electrodes immersed in pure water, nothing happens! \(6 \text{ V} < 2.06 \text{ V} \) ???
 ♦ pure water has pH = 7.0 \([\text{H}_3\text{O}^+] = [\text{OH}^-] = 10^{-7}\) → far from standard conditions of 1 M
 ♦ overall reaction \(6 \text{H}_2\text{O} \rightarrow 2\text{H}_2 + \text{O}_2 + 4 \text{H}^+ + 4 \text{OH}^-\)
 \(Q = [\text{H}^+]^4[\text{OH}^-]^4 = K_w^4\)
 \(\varepsilon = \varepsilon^\circ - 0.06/n \log Q = -2.06 \text{ V} - 0.06/4 \log 10^{-56} = -1.22 \text{ V}\)
 \(6 \text{ V} < 1.22 \text{ V} \) ???
 ♦ pure water has very few ions → not a good electrolyte → no salt bridge
 ♦ add a small amount of soluble electrolyte (salt – which cation/anion?) → \(\text{H}_2, \text{O}_2\) generations
 starts instantaneously
 • electrolysis of mixture of ions (\(\text{Na}^+, \text{Al}^{3+}, \text{Fe}^{2+}, \text{Cu}^{2+}, \text{Ag}^+, \text{Au}^{3+}\))
 ♦ need to order ions by reduction potentials → the most positive will occur at the lowest potential first → layered plating from one solution
 • aluminum production
 ♦ Hall-Heroult process: molten \(\text{Al}_2\text{O}_3\) (bauxite)/\(\text{Na}_3\text{AlF}_6\) (cryolite) at 1000 °C
 ♦ Why molten and not aqueous solution?
 \(\text{Al}^{3+} + 3 \text{e}^- \rightarrow \text{Al}\) \(-\varepsilon^\circ = -1.66 \text{ V}\)
 competes with and looses against
 \(2 \text{H}_2\text{O} + 2 \text{e}^- \rightarrow \text{H}_2 + 2 \text{OH}^-\) \(-\varepsilon^\circ = -0.83 \text{ V}\)
 a less negative reduction potential
 ♦ Melting point (\(\text{Al}_2\text{O}_3\)) \~ 2050 °C, but with \(\text{Na}_3\text{AlF}_6\) melting point depression down to 1000 °C
 in addition to formation of \([\text{Al}_2\text{OF}_6]^{2-}\)
 ♦ anode: \([\text{Al}_2\text{OF}_6]^{2-} + 12 \text{F}^- + \text{C} \rightarrow 4 [\text{AlF}_6]^{3-} + \text{CO}_2 + 4 \text{e}^-\)
 ♦ cathode: \([\text{AlF}_6]^{3-} + 3 \text{e}^- \rightarrow \text{Al} + 6 \text{F}^-\) (current 250 000 A)
 • sodium chloride electrolysis – Downs cell, Chlor-Alkali process
 ♦ \(\text{NaCl/CaCl}_2\) molten electrolysis – m.p. depression
 ♦ anode: \(2 \text{Cl}^- \rightarrow \text{Cl}_2 + 2 \text{e}^-\) \(-\varepsilon^\circ = -1.36 \text{ V}\)
 \(\text{Cl}_2\) bubbles through molten salt
 ♦ cathode: \(\text{Na}^+ + \text{e}^- \rightarrow \text{Na}\) \(-\varepsilon^\circ = -2.71 \text{ V}\)
 melted Na is taken from the bottom
 ♦ \(\text{NaCl}\) solution electrolysis with mercury anode/cathode electrodes:
 ♦ anode: \(2 \text{Cl}^- \rightarrow \text{Cl}_2 + 2 \text{e}^-\) \(-\varepsilon^\circ = -1.36 \text{ V}\)
 \(\text{Cl}_2\) bubbles through aqueous solution
 since \(\text{H}_2\) evolution on \(\text{Hg}\) has a very high overpotential (reaction rate and mass transfer rates are comparable – limited solvation of the \(\text{Hg}\) electrode) – no water reduction reaction
 \(\text{Na}^+ + \text{e}^- \rightarrow \text{Na}\) \(-\varepsilon^\circ = -2.71 \text{ V}\)
 Na froms amalgam with \(\text{Hg}\)
 • \(\text{NaHg}\) amalgam is reacted with water to form \(\text{NaOH}\) and \(\text{H}_2\) at the cathode electrode.