1. Chemical equilibrium: various definitions:
 - $\Delta G_{\text{rxn}} = 0 \rightarrow$ most general formula = $\Delta G_{\text{products}} - \Delta G_{\text{reactants}}$
 → using $\Delta G^o = \Delta H^o - T\Delta S^o + RT \ln p$; where o means standard conditions (25 °C and 1 atm pressure), $T\Delta S^o$ is the temperature- and $RT \ln p$ is pressure-dependence
 - \[\text{[Co(OH}_2)_6]^{2+} + 4 \text{Cl}^- \rightleftharpoons [\text{CoCl}_4]^{2-} + 6 \text{H}_2\text{O} \]
 - $\Delta H^o > 0$ kJ/mol, $\Delta S^o > 0$ kJ/mol, $\Delta G(T) < 0$
 - at o conditions violet solution, cool down becomes pink, warm up blue
 → changing T,p will shift the reaction toward a new equilibrium

 - A state where the concentration of products and reactants remain constant.
 → consider adding AgNO$_3$ or NaCl to the above reaction
 → remember dissolving CuCl$_2$ in water than adding ammonia than adding HCl gas ...
 → adding or removing products or reactants will shifts the reaction to a new equilibrium

 - A dynamic situation where the forward rate/speed of the reaction equals with the reverse rate
 - $\text{H}_2\text{O}(g) + \text{CO}(g) \rightleftharpoons \text{H}_2(g) + \text{CO}_2(g)$
 → introduce a change (↓ temperature = slow down the molecules, ↑ pressure = increase the speed of the molecules ~ collisions) to a closed container and reaction moves to a new equilibrium

2. Characterization of chemical equilibrium with equilibrium constant (K)
 - consider ammonia synthesis:
 - $\text{N}_2(g) + 3 \text{H}_2(g) \rightleftharpoons 2 \text{NH}_3(g)$

 - $t = 25 ^\circ \text{C}$ (o normal conditions) $\Delta H^o = -92 \text{ kJ/mol}, \Delta S^o = -34 \text{ J/molK}, \Delta G^o = -34 \text{ kJ/mol}$;
 - since $\Delta G^o < 0$ this is a spontaneous process and not at the equilibrium \Rightarrow large kinetic barrier (need high collision energy to activate the inert N_2 and H_2 molecules) \rightarrow reaction is kinetically controlled

 - the law of mass action is used to describe the equilibrium conditions:
 - in general for a reaction $j \text{A} + k \text{B} \leftrightarrow l \text{C} + m \text{D}$ then the equilibrium constant is:
 \[\frac{[C]^l[D]^m}{[A]^j[B]^k} \]
 - by convention K is dimension less; however, it has $(\text{mol/dm}^3)^{ΔN}$

 - $t = 127 ^\circ \text{C}$; there is some limited formation of the ammonia:
 \[[\text{NH}_3] = 3.1 \cdot 10^{-2} \text{ mol/dm}^3; [\text{N}_2] = 8.5 \cdot 10^{-1} \text{ mol/dm}^3; [\text{H}_2] = 3.1 \cdot 10^{-3} \text{ mol/dm}^3 \Rightarrow K = 3.8 \cdot 10^4 \]
 - for the reverse reaction $2\text{NH}_3 \leftrightarrow \text{N}_2 + 3 \text{H}_2$ $K_{\text{reverse}} = K^{-1}$

 - $t = 500 ^\circ \text{C}$; $K = 6 \cdot 10^2$ \rightarrow strong temperature dependence of K \rightarrow can we analytically determine this?

3. Temperature dependence of the equilibrium constant
 - Remember from free-energy expression in equilibrium $\Delta G^o = -RT \ln K \Rightarrow \Delta H^o - T\Delta S^o = -RT \ln K$
 - $\ln K(T) = - \frac{\Delta G^o}{RT} = - \frac{\Delta H^o}{RT} (1/T) + \frac{\Delta S^o}{R}$
 - Does this expression look familiar? What was the constant before?
4. Pressure dependence of the equilibrium constant (remember: concentration in gas phase = partial pressure) (remember: vapor pressure of mixed liquids = \(\Sigma \chi_i p_{\text{vap},i} \))

- consider the ideal gas equation \(p = \frac{n}{V} RT = c RT \) (remember: osmotic pressure)
 where \(c \) is the molar concentration of the gas (molarity)

- \(K_c = \frac{[\text{NH}_3]^2}{[\text{N}_2][\text{H}_2]^3} \) or \(K_p = \frac{p_{\text{NH}_3}^2}{p_{\text{N}_2} p_{\text{H}_2}^3} \) → interconversion by using \(c = p/RT \) gives \(K_p = K_c (RT)^{\Delta N} \),
 where \(\Delta N \) is the difference between the number of particles of the product and reactant sides