Dependence of $[\text{Fe}^{\text{II}}(L_x)]$-NO binding on Aminocarboxylate Ligand structure: Changes in both non-chelating and chelating atoms

Ryan Hutcheson

I. Introduction
 a. Seven-coordinate nature of Fe^{II}(EDTA/MIDA) complexes
 b. Structural changes to ligands
 i. EDTA analogs
 ii. MIDA analogs
 iii. Unrelated ligands

II. Techniques
 a. UV/VIS
 i. Metal d-d transitions
 ii. Metal-Ligand (Fe^{II}-Fe^{III}) Charge-Transfer transitions
 b. ATR-IR
 i. N-O stretching/bending
 c. Cyclic Voltammetry
 i. Oxidation/Reduction center of $\text{Fe}^{\text{II/III}}$(Lx) complex
 ii. Structural dependence of Fe^{III}EDTA oxidation

III. Results
 a. UV/VIS – reversible vs. irreversible binding of NO
 b. ATR-IR – NO orientation to metal center (linear vs. bent)
 c. Voltammetry – Stabilization of Fe^{II} state

IV. Conclusions
 a. Correlation between three techniques – overlapping evidence
 b. Structural dependence of Fe^{II}-NO stability constant
 c. Structural dependence of NO reduction
 d. Why Fe^{II}-NO binding

V. References
 a. Have yet to find (I know what it is)