Coordination chemistry in heme proteins: How the axial ligand alters the binding ability of the active site to oxygen-containing complexes

Linnzi Furman

I. INTRODUCTION
 o Definition of a heme protein
 o The importance of heme proteins
 o Characteristics of heme proteins
 o Common ligands and substrates (examples of enzyme models)
 o Common reaction cycles
 o The apparent effects of CO and NO binding to heme
 o The role of the axial ligand
 o The motive for studying the effects of the axial ligand on oxygen-containing complexes to heme proteins

II. METHODS
 o An explanation of B3LYP
 o Description of Density Functional Theory
 o The ability of DFT to predict geometries
 o The model molecules studied
 o Conditions of the methods

III. ANALYSIS
 o Spin state results for \(\text{O}_2 \) (low spin Fe (III))
 o Open shell singlet for Fe\(^{III}\)O\(_2\)^-
 o Coordination of \(\text{O}_2 \) to Fe through overlap
 o Axial ligand role in binding of \(\text{O}_2 \) to Fe (III) (comparison of axial ligands to bond energies)
 o Coordination of NO to Fe
 o Coordination of CO to Fe
 o Binding variances for three substrates in different metalloenzymes

IV. DISCUSSION
 o Comparison of three oxygen-containing substrates in binding patterns
 o Differences in spin states
 o Differences in electron configurations
 o Differences in geometries
 o Axial ligands’ roles in binding affinity (proposed for NO and CO)
 o Example of Cu as the metal as compared to Fe and the differences in binding
 o How this research relates to other studies
 ▪ DFT investigation of Fe-N-O in heme proteins
 ▪ Spin-dependent mechanism for diatomic ligand binding to heme
 ▪ Electronic spin transition in ligand-heme protein binding (including some kinetics)
V. REFERENCES

